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LETTER

REPLY TO WANG AND CHEN:

An ancient origin of magnetotactic bacteria
Wei Lina,b,1, Greig A. Patersona, Qiyun Zhuc, Yinzhao Wanga,b, Evguenia Kopylovad, Ying Lie, Rob Knightd,f,
Dennis A. Bazylinskig, Rixiang Zhuh, Joseph L. Kirschvinki,j,1, and Yongxin Pana,b,1

Our recent paper (1) reports an ancient origin ofmagneto-
tactic bacteria (MTB) before or near the divergence be-
tween the phyla Nitrospirae and Proteobacteria, which
has implications for the Archean geomagnetic field
and paleoenvironment.

Wang and Chen (2) appear to have misunderstood
our paper, noting that we only consider the inference
of a magnetotactic ancestor of Proteobacteria and
Nitrospirae. However, this is only one of the sugges-
tions in our paper. We do not rule out the possibility of
undetected ancient horizontal gene transfer (HGT) be-
tween these phyla and clearly mention in our paper
that magnetosome gene clusters (MGCs) were “pre-
sent before the separation of the Nitrospirae and Pro-
teobacteria phyla, or transferred undetectably early
between the base of Nitrospirae and Proteobacteria
soon after divergence.”

Wang and Chen also raise questions about the high
loss rate of MGCs. First, their analysis of 16S rRNA genes
(figure 1 in ref. 2) is missing many MTB sequences, for
example, Nitrospirae (3), Deltaproteobacteria (4, 5), and
Gammaproteobacteria (6), making their assessment of
loss rate inaccurate. Second, the metabolic/bioenergetic
cost of replicating MGCs and forming magnetosomes is
high (7). When the magnetotactic advantage is small or
zero with respect to its energy cost, it is energetically
favorable to no longer produce magnetosomes. As a
consequence, the frequency of spontaneous loss of
magnetosome genes in cultivated MTB is known to be
high (8). Such a high loss over short laboratory timescales
could translate to a significant loss rate of geological
times. Third,MTBoccupy a specific environmental niche,
requiring environmental gradients and a magnetic field.

Putting natural MTB populations in a zero field drives
some MTB populations down (9). It is therefore not
surprising that MTB are sensitive to unfavorable envi-
ronments and can be outcompeted by other microor-
ganisms. A high loss rate of the MGCs throughout
bacterial lineages should be expected.

Wang andChen also suggest that our analysis against
recent HGT is unconvincing due to a perceived small
number of MTB and the likely saturation of substitution
rate per synonymous site (dS). For our study, we have
included all available genomes of MTB in Proteobacteria
and Nitrospirae (12 genomes as of January 2016), which
to our knowledge is the most comprehensive genomic
analysis of MTB ever undertaken. The dS values in our
study are all <2, which are considered acceptable by
modern standards (10). Furthermore, we use a combina-
tion of phylogenetic congruence, codon use bias, dS,
and sequence homology-based analyses to robustly rule
out recent HGTs between these phyla.

Finally, Wang and Chen raise a hypothesis that
MGCs originated in Alphaproteobacteria and were
transferred to some members of Nitrospirae and Del-
taproteobacteria through ancient HGT. However, they
do not provide any evidence to support this. Although
their cited references hypothesize ancient transfer be-
tween Nitrospirae and Proteobacteria, a scenario that
we consider in our paper, none of these references has
suggested the origin of MGC in Alphaproteobacteria
and transfer specifically from Alphaproteobacteria to
Nitrospirae and Deltaproteobacteria. Furthermore,
this hypothesis cannot explain the distribution of
MTB in Gammaproteobacteria and perhaps in other
classes of Proteobacteria.
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